
The following is taken from RIFFMCI.RTF, "Multimedia Programming Interface and
Data Specification v1.0", a Windows RTF (Rich Text Format) file contained in the .zip
file, RMRTF.ZRT. The original document is quite long and this constitutes pages 83-
95 of the text format version (starting on roughly page 58 of the RTF version).

Waveform Audio File Format (WAVE)

This section describes the Waveform format, which is used to represent digitized sound.

The WAVE form is defined as follows. Programs must expect (and ignore) any
unknown chunks encountered, as with all RIFF forms. However, <fmt-ck> must always
occur before <wave-data>, and both of these chunks are mandatory in a WAVE file.

<WAVE-form> ⇒
RIFF('WAVE'

<fmt-ck> // Format
[<fact-ck>] // Fact chunk
[<cue-ck>] // Cue points
[<playlist-ck>] // Playlist
[<assoc-data-list>] // Associated data list
<wave-data>) // Wave data

The WAVE chunks are described in the following sections.

WAVE Format Chunk

The WAVE format chunk <fmt-ck> specifies the format of the <wave-data>. The
<fmt-ck> is defined as follows:

<fmt-ck> ⇒ fmt(<common-fields>
<format-specific-fields>)

<common-fields> ⇒
struct

 {
WORD wFormatTag; // Format category

 WORD wChannels; // Number of channels
 DWORD dwSamplesPerSec; // Sampling rate
 DWORD dwAvgBytesPerSec; // For buffer estimation
 WORD wBlockAlign; // Data block size
 }

The fields in the <common-fields> chunk are as follows:

Field Description

wFormatTag A number indicating the WAVE format category of the
file. The content of the <format-specific-fields>
portion of the ‘fmt’ chunk, and the interpretation of the
waveform data, depend on this value.

You must register any new WAVE format categories. See
“Registering Multimedia Formats” in Chapter 1,
“Overview of Multimedia Specifications,” for information
on registering WAVE format categories.

“Wave Format Categories,” following this section, lists the
currently defined WAVE format categories.

wChannels The number of channels represented in the waveform data,
such as 1 for mono or 2 for stereo.

dwSamplesPerSec The sampling rate (in samples per second) at which each
channel should be played.

dwAvgBytesPerSec The average number of bytes per second at which the
waveform data should be transferred. Playback software
can estimate the buffer size using this value.

wBlockAlign The block alignment (in bytes) of the waveform data.
Playback software needs to process a multiple of
wBlockAlign bytes of data at a time, so the value of
wBlockAlign can be used for buffer alignment.

The <format-specific-fields> consists of zero or more bytes of parameters. Which
parameters occur depends on the WAVE format category–see the following section for
details. Playback software should be written to allow for (and ignore) any unknown
<format-specific-fields> parameters that occur at the end of this field.

WAVE Format Categories

The format category of a WAVE file is specified by the value of the wFormatTag field
of the ‘fmt’ chunk. The representation of data in <wave-data>, and the content of the
<format-specific-fields> of the ‘fmt’ chunk, depend on the format category.

The currently defined open non-proprietary WAVE format categories are as follows:

wFormatTag Value Format Category

WAVE_FORMAT_PCM (0x0001) Microsoft Pulse Code Modulation (PCM)
format

The following are the registered proprietary WAVE format categories:

wFormatTag Value Format Category

IBM_FORMAT_MULAW (0x0101) IBM mu-law format

IBM_FORMAT_ALAW (0x0102) IBM a-law format

IBM_FORMAT_ADPCM (0x0103) IBM AVC Adaptive Differential Pulse Code
Modulation format

The following sections describe the Microsoft WAVE_FORMAT_PCM format.

Pulse Code Modulation (PCM) Format

If the wFormatTag field of the <fmt-ck> is set to WAVE_FORMAT_PCM, then the
waveform data consists of samples represented in pulse code modulation (PCM) format.
For PCM waveform data, the <format-specific-fields> is defined as follows:

<PCM-format-specific> ⇒
struct

 {
WORD wBitsPerSample; // Sample size

 }

The wBitsPerSample field specifies the number of bits of data used to represent each
sample of each channel. If there are multiple channels, the sample size is the same for
each channel.
For PCM data, the wAvgBytesPerSec field of the ‘fmt’ chunk should be equal to the
following formula rounded up to the next whole number:

The wBlockAlign field should be equal to the following formula, rounded to the next
whole number:

Data Packing for PCM WAVE Files

In a single-channel WAVE file, samples are stored consecutively. For stereo WAVE
files, channel 0 represents the left channel, and channel 1 represents the right channel.
The speaker position mapping for more than two channels is currently undefined. In
multiple-channel WAVE files, samples are interleaved.
The following diagrams show the data packing for a 8-bit mono and stereo WAVE
files:

Sample 1 Sample 2 Sample 3 Sample 4

Channel 0 Channel 0 Channel 0 Channel 0

Data Packing for 8-Bit Mono PCM

Sample 1 Sample 2
Channel 0

(left)
Channel 1
(right)

Channel 0
(left)

Channel 0
(right)

Data Packing for 8-Bit Stereo PCM

The following diagrams show the data packing for 16-bit mono and stereo WAVE files:

Sample 1 Sample 2
Channel 0

low-order byte

Channel 0

high-order byte

Channel 0

low-order byte

Channel 0

high-order byte

Data Packing for 16-Bit Mono PCM

Sample 1
Channel 0

(left)
low-order byte

Channel 0
(left)

high-order byte

Channel 1
(right)

low-order byte

Channel 1
(right)

high-order byte

Data Packing for 16-Bit Stereo PCM

Data Format of the Samples

Each sample is contained in an integer i. The size of i is the smallest number of bytes
required to contain the specified sample size. The least significant byte is stored first.
The bits that represent the sample amplitude are stored in the most significant bits of i,
and the remaining bits are set to zero.

For example, if the sample size (recorded in nBitsPerSample) is 12 bits, then each
sample is stored in a two-byte integer. The least significant four bits of the first (least
significant) byte is set to zero.

The data format and maximum and minimums values for PCM waveform samples of
various sizes are as follows:

Sample Size Data Format Maximum
Value

Minimum
Value

One to eight bits Unsigned
integer

255 (0xFF) 0

Nine or more bits Signed integer i Largest positive
value of i

Most negative value
of i

For example, the maximum, minimum, and midpoint values for 8-bit and 16-bit PCM
waveform data are as follows:

Format Maximum
Value

Minimum
Value

Midpoint Value

8-bit PCM 255 (0xFF) 0 128 (0x80)

16-bit PCM 32767 (0x7FFF) -32768 (-0x8000) 0

Examples of PCM WAVE Files

Example of a PCM WAVE file with 11.025 kHz sampling rate, mono, 8 bits per
sample:

RIFF('WAVE' fmt(1, 1, 11025, 11025, 1, 8)
 data(<wave-data>))

Example of a PCM WAVE file with 22.05 kHz sampling rate, stereo, 8 bits per sample:

RIFF('WAVE' fmt(1, 2, 22050, 44100, 2, 8)
 data(<wave-data>))

Example of a PCM WAVE file with 44.1 kHz sampling rate, mono, 20 bits per sample:

RIFF('WAVE' INFO(INAM("O Canada"Z))
 fmt(1, 1, 44100, 132300, 3, 20)
 data(<wave-data>))

Storage of WAVE Data

The <wave-data> contains the waveform data. It is defined as follows:

<wave-data> ⇒ { <data-ck> | <data-list> }

<data-ck> ⇒ data(<wave-data>)

<wave-list> ⇒ LIST('wavl' { data-ck> | // Wave
samples

<silence-ck> }...) // Silence

<silence-ck> ⇒ slnt(<dwSamples:DWORD>) // Count of
// silent samples

Note: The ‘slnt’ chunk represents silence, not necessarily a repeated zero volume or
baseline sample. In 16-bit PCM data, if the last sample value played before the silence
section is a 10000, then if data is still output to the D to A converter, it must maintain
the 10000 value. If a zero value is used, a click may be heard at the start and end of the
silence section. If play begins at a silence section, then a zero value might be used since
no other information is available. A click might be created if the data following the
silent section starts with a nonzero value.

FACT Chunk

The <fact-ck> fact chunk stores important information about the contents of the WAVE
file. This chunk is defined as follows:

<fact-ck> ⇒ fact(<dwFileSize:DWORD>) // Number of
samples

The “fact” chunk is required if the waveform data is contained in a “wavl” LIST chunk
and for all compressed audio formats. The chunk is not required for PCM files using the
“data” chunk format.
The "fact" chunk will be expanded to include any other information required by future
WAVE formats. Added fields will appear following the <dwFileSize> field.
Applications can use the chunk size field to determine which fields are present.

Cue-Points Chunk

The <cue-ck> cue-points chunk identifies a series of positions in the waveform data
stream. The <cue-ck> is defined as follows:

<cue-ck> ⇒ cue(<dwCuePoints:DWORD> // Count of cue points
<cue-point>...) // Cue-point table

<cue-point> ⇒ struct {
DWORD dwName;
DWORD dwPosition;
FOURCC fccChunk;
DWORD dwChunkStart;
DWORD dwBlockStart;
DWORD dwSampleOffset;

}

The <cue-point> fields are as follows:

Field Description

dwName Specifies the cue point name. Each <cue-point> record
must have a unique dwName field.

dwPosition Specifies the sample position of the cue point. This is the
sequential sample number within the play order. See
“Playlist Chunk,” later in this document, for a discussion
of the play order.

fccChunk Specifies the name or chunk ID of the chunk containing
the cue point.

dwChunkStart Specifies the file position of the start of the chunk
containing the cue point. This is a byte offset relative to
the start of the data section of the ‘wavl’ LIST chunk.

dwBlockStart Specifies the file position of the start of the block
containing the position. This is a byte offset relative to
the start of the data section of the ‘wavl’ LIST chunk.

dwSampleOffset Specifies the sample offset of the cue point relative to the
start of the block.

Examples of File Position Values

The following table describes the <cue-point> field values for a WAVE file containing
multiple ‘data’ and ‘slnt’ chunks enclosed in a ‘wavl’ LIST chunk:

Cue Point
Location

Field Value

In a ‘slnt’ chunk fccChunk FOURCC value ‘slnt’.

dwChunkStart File position of the ‘slnt’ chunk
relative to the start of the data section
in the ‘wavl’ LIST chunk.

dwBlockStart File position of the data section of the
‘slnt’ chunk relative to the start of the
data section of the ‘wavl’ LIST chunk.

dwSampleOffset Sample position of the cue point
relative to the start of the ‘slnt’ chunk.

In a PCM ‘data’
chunk

fccChunk FOURCC value ‘data’.

dwChunkStart File position of the ‘data’ chunk
relative to the start of the data section
in the ‘wavl’ LIST chunk.

dwBlockStart File position of the cue point relative
to the start of the data section of the
‘wavl’ LIST chunk.

dwSampleOffset Zero value.

In a compressed
‘data’ chunk

fccChunk FOURCC value ‘data’.

dwChunkStart File position of the start of the ‘data’
chunk relative to the start of the data
section of the ‘wavl’ LIST chunk.

dwBlockStart File position of the enclosing block
relative to the start of the data section
of the ‘wavl’ LIST chunk. The software
can begin the decompression at this
point.

dwSampleOffset Sample position of the cue point
relative to the start of the block.

The following table describes the <cue-point> field values for a WAVE file containing
a single ‘data’ chunk:

Cue Point
Location

Field Value

Within PCM data fccChunk FOURCC value ‘data’.

dwChunkStart Zero value.

dwBlockStart Zero value.

dwSampleOffset Sample position of the cue point
relative to the start of the ‘data’ chunk.

In a compressed
‘data’ chunk

fccChunk FOURCC value ‘data’.

dwChunkStart Zero value.

dwBlockStart File position of the enclosing block
relative to the start of the ‘data’ chunk.
The software can begin the
decompression at this point.

dwSampleOffset Sample position of the cue point
relative to the start of the block.

Playlist Chunk

The <playlist-ck> playlist chunk specifies a play order for a series of cue points. The
<playlist-ck> is defined as follows:

<playlist-ck> ⇒ plst(
<dwSegments:DWORD> // Count of play

segments
<play-segment>...) // Play-segment table

<play-segment> ⇒ struct {
DWORD dwName;
DWORD dwLength;
DWORD dwLoops;

}

The <play-segment> fields are as follows:

Field Description

dwName Specifies the cue point name. This value must match one
of the names listed in the <cue-ck> cue-point table.

dwLength Specifies the length of the section in samples.

dwLoops Specifies the number of times to play the section.

Associated Data Chunk

The <assoc-data-list> associated data list provides the ability to attach information like
labels to sections of the waveform data stream. The <assoc-data-list> is defined as
follows:

<assoc-data-list> ⇒ LIST('adtl'
<labl-ck> // Label
<note-ck> // Note
<ltxt-ck> // Text with data length
<file-ck>) // Media file

<labl-ck> ⇒ labl(<dwName:DWORD>
<data:ZSTR>)

<note-ck> ⇒ note(<dwName:DWORD>
<data:ZSTR>)

<ltxt-ck> ⇒ ltxt(<dwName:DWORD>
<dwSampleLength:DWORD>
<dwPurpose:DWORD>
<wCountry:WORD>
<wLanguage:WORD>
<wDialect:WORD>
<wCodePage:WORD>
<data:BYTE>...)

<file-ck> ⇒ file(<dwName:DWORD>
<dwMedType:DWORD>
<fileData:BYTE>...)

Label and Note Information

The ‘labl’ and ‘note’ chunks have similar fields. The ‘labl’ chunk contains a label, or
title, to associate with a cue point. The ‘note’ chunk contains comment text for a cue
point. The fields are as follows:

Field Description

dwName Specifies the cue point name. This value must match one
of the names listed in the <cue-ck> cue-point table.

data Specifies a NULL-terminated string containing a text
label (for the ‘labl’ chunk) or comment text (for the ‘note’
chunk).

Text with Data Length Information

The “ltxt” chunk contains text that is associated with a data segment of specific length.
The chunk fields are as follows:

Field Description

dwName Specifies the cue point name. This value must match one
of the names listed in the <cue-ck> cue-point table.

dwSampleLength Specifies the number of samples in the segment of
waveform data.

dwPurpose Specifies the type or purpose of the text. For example,
dwPurpose can specify a FOURCC code like ‘scrp’ for
script text or ‘capt’ for close-caption text.

wCountry Specifies the country code for the text. See “Country
Codes” in Chapter 2, “Resource Interchange File Format,”
for a current list of country codes.

wLanguage,
wDialect

Specify the language and dialect codes for the text. See
“Language and Dialect Codes” in Chapter 2, “Resource
Interchange File Format,” for a current list of language
and dialect codes.

wCodePage Specifies the code page for the text.

Embedded File Information

The ‘file’ chunk contains information described in other file formats (for example, an
‘RDIB’ file or an ASCII text file). The chunk fields are as follows:

Field Description

dwName Specifies the cue point name. This value must match one
of the names listed in the <cue-ck> cue-point table.

dwMedType Specifies the file type contained in the fileData field. If
the fileData section contains a RIFF form, the
dwMedType field is the same as the RIFF form type for
the file.

This field can contain a zero value.

fileData Contains the media file.

